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On the analogy between the transport of vorticity and 
heat in laminar boundary layers 

By N. RILEY 
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(Received 23 March 1962) 

The analogy between the transport of heat and vorticity when the Prandtl 
number is unity is used to provide a simple complementary solution of the 
boundary-layer energy equation for plane flow. The solution is extended to 
apply to axisymmetric boundary layers by suitably stretching the co-ordinate 
normal to the wall. Several applications of the solution are discussed. 

1. Introduction 
When the Prandtl number u is unity a particular integral of the energy equation 

for steady compressible boundary-layer flow is provided by the well-known 
relation 

(1)  TH = const., 

where TH = T+(u2/2C,) is the total temperature; here T is the temperature, 
u the velocity in the direction of the mainstream and C’ the specific heat at 
constant pressure. The solution (1) describes the temperature distribution in the 
boundary layer on a thermally insulated surface. Further, if the pressure is 
everywhere constant, again with u = 1, a more general solution of the energy 
equation is TH = Au + B where A and B are constants. This solution describes 
the temperature distribution in the steady boundary layer on a flat plate main- 
tained at a constant temperature; the solution also has application to jet flows. 

A further solution, in simple form, of the energy equation in thermal boundary 
layers when both the Mach number and relative temperature variations are 
small, with cr = 1, may be obtained by considering the analogy between the 
transport of heat and vorticity. Thus, for plane flow with u = 1, the equation for 
the vorticity o = ck and the energy equation, with the effects of viscous dissipa- 
tion neglected, become 

aqat+v.vc = vv2c, aqat+v.vT = V V T ,  ( 2 )  

where v = (u, v, 0) is the velocity vector and v the kinematic viscosity; the 
physical properties of the fluid are assumed to be constant. In  the boundary- 
layer approximation we can then write as a solution of the second of equations ( 2 )  

T = ~ a u / a y ,  (3) 

where y is the co-ordinate normal to the wall. The solution can be extended to 
axisymmetric boundary layers by a suitable stretching of the co-ordinate y ,  and 
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to fully compressible boundary layers in which the pressure is constant and the 
viscosity p is proportional to the temperature. Several applications of the 
solution are discussed in $3.  

2. Equations of motion 
In  the boundary-layer approximation the momentum, continuity and energy 

equations for fully compressible axisymmetric flow, in which there is no swirling 
component of velocity, over a body of revolution are 

Here x is measured along the wall from the forward stagnation point of the body 
and y is measured normal to the wall, and r = T ( X )  denotes normal distance from 
the axis of symmetry. If T = 1 the above equations become those for com- 
pressible, two-dimensional boundary-layer flow. The specific heat C, and Prandtl 
number CT are assumed to be constant. The pressure p is related to the density p 
and temperature T by the equation of state 

where R is the gas constant. 

integral, which for steady flow with 
complementary solutions T satisfying the equation 

P = PRT, (7) 

The solution of equation (6) may be written as the sum of the particular 
= 1 is given by equation (l), together with 

If viscous dissipation effects may be neglected then the energy equation takes the 
form (8). It is with solutions of equation (8) that we shall be concerned. If the 
pressure is everywhere constant then one solution of equation (8) is T = Au. 
We shall show that: 

(i) if p = pw and ,u = ,uw are constant a further simple solution of (8) is 

(ii) if p and p vary with temperature with ,u cc T and p = const. then the 
solution analogous to (9) is 

- A a+ 
Pr ay 

T=--. 

It will be noted that for plane flow the solution (9) is simply the vorticity on the 
boundary-layer approximation as indicated in Q 1. The solution with r not con- 
stant and the solution (10) are derived from the basic solution (3) by a suitable 
modification of the co-ordinate y. 
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In  order to obtain the results (9) and (10)  we differentiate the momentum 
equation (4) with respect to y to give 

Using the equation of continuity (5) ,  the second term of the left-hand side of (1 1) 
may be written as 

(12) 
and consequently equation ( 1  1 )  becomes 

(13)  
In  either of the cases (i) and (ii) above the pressure term in equation (13 )  vanishes 
and, remembering that in case (ii) pp = const., comparison of (13 )  with (8) 
establishes the results (9) and (10). 

For steady flow the results (9) and (10) are obtained more directly using von 
Mises’ transformation. If the equations (4) and (8) are written in von Mises’ 
form where (x, $) are chosen as new independent variables, $ being the stream 
function for steady flow defined by 

pru  = a $ p y ,  prv = -a$/ax ,  ( 14 )  

then differentiation of the momentum equation with respect to $ yields the 
desired results immediately. 

The results (9) and (10) have thus been established and in 3 3 below we consider 
some applications of these solutions to steady flows. 

3. Applications (i) Flat plate 
Consider first the flow over a semi-infinite flat plate. In  this case the pressure is 
constant and we may allow variations of p and p with temperature provided that 
p cc T .  Suppose that x = 0 corresponds to the leading edge of the plate and that 
for x > x,, the plate is thermally insulated so that aT/ay vanishes at  the wall. By 
multiplying equation (4) by u, adding this to (6) and integrating the resulting 
equation with respect to y it can be shown that, for x > x,,, 

~u(TH - THm) dy  = const., s: 
where TH = T + (u2/2C,) is the total temperature with the subscript co denoting 
its free stream value. In  this case the solution of equations (4) and (5) may be 
written 

and f (7) satisfies 
f” + 4 8 ”  = 0,  

f ( 0 )  = f ’ ( O )  = O;f’(m) = 1. 
26 Fluid Mech. 14 
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Thus, from (15) and (16) and provided that T H  - T H m  does not change sign across 
the boundary layer at x = xo, we have T H  - T H m  - x-6 showing how T H  assumes 
its final value T H ,  in the boundary layer. Since the wall is thermally insulated we 
have then, from equations (10) and (16)) 

If the distribution of TH is given at  any section, say x = xo, then the constant A 
may be determined from equation (15). If T H - T H ,  changes sign across the 
boundary layer a t  2 = xo in such a manner that A = 0 then TfT approaches its 
final value T H ,  more rapidly than x-4. The functionsf’(7) andf“(7) are shown in 
figure 1. 

T H - T H ,  N A X - i f  ”(7). (18) 

7 
FIGURE 1. The functions f’ and f “  for the boundary layer on a flat plate. 

(ii) Wedge flows 
Further simple examples of plane flow are provided by flows past symmetric 
wedges where the free-stream velocity U, = axm. In  this case, with m $. 0, the 
pressure is not constant everywhere and so, in accordance with $2,  we must have 
p and p constant. An interesting special case is that of flow past a wedge of 
angle &r giving m = 5. To solve equations (4) and (5) we then put 

@ = (3av)4x%f(7), 7 = ( a / 3 v ) + d y ,  (19) 
and f (7) satisfies f” + 2sf” -f’2+ 1 = 0, 

f (0)  = f ’ ( O )  = O ; f ’ ( o o )  = 1. 

We see from (19) that for this flow the solution (9) of equation (8) is the solution 
when the wall is maintained at a constant temperature T,. Thus, if viscous 
dissipation effects can be ignored altogether, the temperature distribution in the 
boundary layer is given by 

T = T, + 0*762(T, - T,) f”(y), 
sincef”(0) = 1.312. 
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Another interesting application of the solution in this case is when the wedge is 
at yaw to the oncoming stream. The equation satisfied by the transverse com- 
ponent of velocity w is 

u-+v- = v-, 

with w = 0 at y = 0, w + W, as y -+ 00. The work of Q 2 and equations (19) show 
that the required solution of equation (22) is 

(22) 
aw aw a2w 
ax ay  ay2 

w = Wm{l - O*762ff’(7)). (23) 
The functionsf’(7) andf”(7) in this case are shown in figure 2. 

\ 3f’ 
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7 
FIGURE 2. The functions f’ and f” for the boundary layer on a wedge of angle 3n. 

(iii) Stagnation-point flow 
As an example of axisymmetric flow in which r (x)  = x we consider the case of 
stagnation-point flow. As is well known this flow is closely related to the previous 
example of plane flow and indeed the solution (9) is again the appropriate solution 
for a wall maintained at constant temperature. Because, if we write 

1G. = (av)4x2f(7) ,  7 = (a/v)% (24) 

then f satisfies equations (20) and again, from (9) and (24), we see that equa- 
tion (21) is the solution for a wall maintained at  constant temperature, if viscous 
dissipation effects are neglected. 

(iv) Jets 

With dpldx = 0 and r = 1, equations (4) to (6) are appropriate to the flow in a 
two-dimensional free jet, or with r (x)  = x to its axisymmetric analogue the 
radial free jet. We shall confine our attention to the axisymmetric case, but the 
final results apply equally well to the two-dimensional flow. Since the pressure 

26-2 
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is constant we may allow variations of p and ,LL with T provided that p cc T. 
To solve equations (4) and (5) we put 

u = [(3Mpm~m)6/xpm,u,l  f’(7L where f ( r )  = $(31Mpmrumx3)-57 ( 2 6 )  

with f (7) satisfying 
f”’+fl’”+f’2 = 0,  

f ( 0 )  =f”(O) = O;f’(co)  = 0,  

and 

0.3 

0.1 

9 

FIGURE 3. The functions f‘ and f“ for flow in a free jet. 

is related to the radial flux of momentum in the jet. Symmetry about 7 = 0 has 
been assumed. Now the solution of (8) ,  given by equation (lo), namely 

T = ( A / p x )  au/ay, (27) 

describes the effects on the temperature distribution of heating the jet in an anti- 
symmetrical manner whilst the other simple solution referred to, 

T = Au, (28) 

corresponds to the case when the heating is symmetrical. The functionsf’(7) and 
f”(7)  are shown in figure 3; the solution withf(co) = 1 has been chosen without 
loss of generality. 


